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Abstract

Purpose – The main objective of this work is to develop a boundary treatment in lattice Boltzmann
method (LBM) for curved and moving boundaries and using this treatment to study numerically the
flow around a rotating isothermal circular cylinder with/without heat transfer.

Design/methodology/approach – A multi-distribution function thermal LBM model is used to
simulate the flow and heat transfer around a rotating circular cylinder. To deal with the calculations
on the surface of cylinder, a novel boundary treatment is developed.

Findings – The results of simulation for flow and heat transfer around a rotating cylinder including
the evolution with time of velocity field, and the lift and drag coefficients are compared with those of
previous theoretical, experimental and numerical studies. Excellent agreements show that present
LBM including boundary treatment can achieve accurate results of flow and heat transfer. In addition,
the effects of the peripheral-to-translating-speed ratio, Reynolds number and Prandtl number on
evolution of velocity and temperature fields around the cylinder are tested.

Practical implications – There is a large class of industrial processes which involve the motion of
fluid passing rotating isothermal circular cylinders with/without heat transfer. Operations ranging
from paper and textile making machines to glass and plastics processes are a few examples.

Originality/value – A strategy for LBM to treat curved and moving boundary with the second-order
accuracy for both velocity and temperature fields is presented. This kind of boundary treatment is
very easy to implement and costs less in computational time.

Keywords Fluid dynamics, Simulation, Heat transfer, Boundary layers

Paper type Research paper

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/0961-5539.htm

The work is supported by the University of Nottingham’s Academic Scholarship and Siemens
Industrial Turbomachinery Ltd (UK)’s case studentship. The authors would also like to thanks
for the support from the International Collaboration Project from Chinese Scientific Ministry
(Ref: 2005DFA00850) and Jilin University under the 985 programme.

HFF
18,6

766

Received 21 February 2007
Revised 6 September 2007
Accepted 9 October 2007

International Journal of Numerical
Methods for Heat & Fluid Flow
Vol. 18 No. 6, 2008
pp. 766-782
q Emerald Group Publishing Limited
0961-5539
DOI 10.1108/09615530810885560



Nomenclature
c ¼ streaming speed, c ; dx=dt
cs ¼ velocity of sound
CD ¼ drag coefficient, CD ¼ D=ðrU 2RÞ
CL ¼ lift coefficient, CL ¼ L=ðrU 2RÞ
D ¼ horizontal component of F
e ¼ discrete velocity vector
f ¼ distribution function of density
F ¼ total force acted on the solid wall
g ¼ distribution function of temperature
h ¼ frequency of vortex shedding
k ¼ ratio of V to U, k ¼ V/U
L ¼ vertical component of F
n ¼ outer-normal vector of cylindrical wall
Nu ¼ Nusselt number,

Nu ¼ 2ð2R=ðTh 2 TlÞÞð›T=›nÞwall

Pr ¼ Prandtl number, Pr ¼ n=g
R ¼ radius of the circular cylinder
Re ¼ Reynolds number, Re ¼ 2UR=n
t ¼ time
St ¼ Strouhal number, St ¼ hR=U
T ¼ temperature
Tl ¼ fluid temperature at the entrance
Th ¼ temperature on the cylinder wall
u ¼ velocity vector
u ¼ horizontal component of u
v ¼ vertical component of u
U ¼ uniform inlet velocity of the flow field
V ¼ peripheral velocity of the cylinder

x ¼ Cartesian coordinate
x ¼ horizontal component of x
y ¼ vertical component of x

Greek symbols
a ¼ direction number (a ¼ 0, . . . , 8)
dx ¼ time step length
dt ¼ space step length
f ¼ scalar array
n ¼ kinematical viscosity
r ¼ density
tn ¼ relaxation times for velocity fields
tc ¼ relaxation times for temperature fields
v ¼ weighting coefficient
g ¼ thermal diffusivity
V ¼ angular velocity of the circular cylinder

Subscripts and superscripts
a ¼ direction number (a ¼ 0, . . . , 8)
* ¼ dimensionless quantities
, ¼ post-collision states

(eq) ¼ equilibrium states
(neq) ¼ nonequilibrium parts
k†l ¼ surface-averaged quantities
† ¼ period-averaged quantities
k†l ¼ period-and-surface-averaged

quantities
^ ¼ approximation values

1. Introduction
There is a large class of industrial processes which involve motion of fluid passing rotating
isothermal circular cylinders with/without heat transfer. Operations ranging from paper
and textile making machines to glass and plastics processes are a few examples.

Over the past few decades, much theoretical and experimental effort has been made
to investigate isothermal flow fields past a rotating cylinder (Badr and Dennis, 1985;
Bergmann et al., 2006; Coutanceau and Menard, 1985; Mittal and Kumar, 2003; Nair
et al., 1998; Takada and Tsutahara, 1998). However, the studies, especially on
numerical simulations of non-isothermal flows past a rotating cylinder are still quite
limited. Therefore, the further effort is made in this paper to study numerically the flow
and heat transfer from a rotating cylinder in cross-flow.

In the present study, the lattice Boltzmann method (LBM) is employed to simulate
such flow across rotating cylinder with heat transfer. Unlike, conventional CFD
simulations which are mainly based on a direct numerical approximation to the
macroscopic N-S equation, the LBM is to construct simplified kinetic models that
incorporate the essential physics of microscopic or mesoscopic processes so that the
macroscopic averaged properties obey the desired macroscopic equations (Chen and
Doolen, 1998). The attractive features, including the simplicity of programming, the
high efficiency on handling interactions between the fluid and wall with complicated
geometry, etc. make the LBM a better choice for the present simulation.
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In general, the existing LBM models for dealing with thermal fluid flows can
basically be divided into two distinct categories, namely: the multi-speed models
(Alexander et al., 1993; Teixeira et al., 2000; Watari and Tsutahara, 2004) and the
multi-distribution function models (Barrios et al., 2005; Guo et al., 2002a; He et al., 1998;
Peng et al., 2003; Shi et al., 2004). In the multi-speed models, only the density
distribution function is used; to obtain the macroscopic energy equation, additional
discrete velocities are introduced; and the equilibrium distributions usually include
higher order velocity terms. In the multi-distribution function models, in addition to the
original density distribution function, a distribution function for temperature is also
introduced. This kind of models can effectively overcome two limitations of the
multi-speed models, namely, severe numerical instability and narrow range of
temperature variation (He et al., 1998). Therefore, in the present study and simulation,
a multi-distribution function model is chosen as the numerical scheme.

To handle the moving curved boundary of temperature field, an extrapolation
method based on the idea of Guo et al. (2002b) will be extended. The method combined
with the velocity boundary treatment presented by Mei et al. (2002) can satisfy the
second-order accuracy for both velocity and temperature on the curved wall.

2. Lattice Boltzmann equations
A two-dimensional nine-velocity (D2Q9) LBM model, as shown in Figure 1, with
multiple distribution functions (Barrios et al., 2005; Guo et al., 2002a) is introduced to
simulate incompressible viscous thermal flows:

faðxþ eadt; t þ dtÞ2 faðx; tÞ ¼
f ðeqÞ
a ðx; tÞ2 faðx; tÞ
� �

tn
; ð1Þ

gaðxþ eadt; t þ dtÞ2 gaðx; tÞ ¼
gðeqÞ
a ðx; tÞ2 gaðx; tÞ

� �
tc

: ð2Þ

where f aðx; tÞ and gaðx; tÞ are, respectively, the density and temperature distribution
functions along the ath direction; f ðeqÞ

a ðx; tÞ and gðeqÞ
a ðx; tÞ are their corresponding

equilibrium states, where:

Figure 1.
The discrete velocity
set of D2Q9 model
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f ðeqÞ
a ðx; tÞ ¼ var 1 þ

3

c 2
ðea ·uÞ þ

9

2c 2
ðea ·uÞ2 2

3

2c 2
u2

� �
; ð3Þ

gðeqÞ
a ðx; tÞ ¼ vaT 1 þ

3

c2
ea ·u

� �
; ð4Þ

ea ¼

0; a ¼ 0

ðcos½ða2 1Þp=4�; sin½ða2 1Þp=4�Þc; a ¼ 1; 3; 5; 7ffiffiffi
2

p
ðcos½ða2 1Þp=4�; sin½ða2 1Þp=4�Þc; a ¼ 2; 4; 6; 8

;

8>><
>>: ð5Þ

va ¼

4=9; a ¼ 0

1=9; a ¼ 1; 3; 5; 7

1=36; a ¼ 2; 4; 6; 8

;

8>><
>>: ð6Þ

where cs ¼ c=
ffiffiffi
3

p
is the speed of sound, other parameters such as u, r, T, n and g are

evaluated as:

r ¼
a

X
f a; ru ¼

a

X
ea f a; T ¼

a

X
ga; n ¼

tn 2 0:5

c2
sdt

; g ¼
tc 2 0:5

c2
sdt

: ð7Þ

Under the incompressible flow limit (i.e. the Mach number Ma ¼ juj=cs ,, 1), through
the Chapman-Enskog expansion, the mass, momentum and energy equations can be
derived from the D2Q9 model as follows (Guo et al., 2002a; Yu et al., 2003):

7 ·u ¼ 0; ð8Þ

›u

›t
þ ðu ·7Þu ¼ 2

1

r
7pþ n72u; ð9Þ

›T

›t
þ 7 · ðuTÞ ¼ g72T: ð10Þ

3. Curved boundary treatment in LBM
Equations (1) and (2) can be computed by the following two steps, i.e. collision and
streaming:

Collision step : ~faðx; tÞ ¼ f aðx; tÞ2
f aðx; tÞ2 f ðeqÞ

a ðx; tÞ
� �

tn
; ð11aÞ

~gaðx; tÞ ¼ gaðx; tÞ2
gaðx; tÞ2 gðeqÞ

a ðx; tÞ
� �

tc
; ð11bÞ

Streaming step : faðxþ eadt; t þ dtÞ ¼ ~faðx; tÞ; ð12aÞ

gaðxþ eadt; t þ dtÞ ¼ ~gaðx; tÞ: ð12bÞ
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As shown in Figure 2, an arbitrary curved wall (the dashed line) separates the solid
region from the fluid region. The black solid circles X, the open circlesˆ and the grey
solid circles W denote the intersections of the boundary with various lattice links (xw),
the boundary nodes in the fluid region (xf), and those in the solid region (xb),
respectively. Obviously, ~f �aðxb; tÞ and ~g �aðxb; tÞ are needed to perform the streaming
step at the fluid node xf.

The fraction of an intersected link in the fluid region, D, can be defined as:

D ¼
jxf 2 xwj

jxf 2 xbj
: ð13Þ

In LBM, the bounce-back scheme was usually applied at the wall boundaries to obtained
no-slip velocity condition. The scheme comes from the idea that a particle distribution
streaming to a wall will be bounced back at the next time-step. Accordingly, the
interacting force between the fluid and wall can be approximated by the momentum
change of the particles neighbouring the wall over a time step (Mei et al., 2002). This
feature enables the boundary treatment in LBM to be very easy. It is well known that the
bounce-back boundary condition satisfies a no-slip velocity boundary condition with
second-order accuracy when D ¼ 1/2. Thermal boundary conditions can be
implemented in a similar way, which can achieve second-order accuracy too.
However, this method can only be used to treat some simple boundaries of straight line
parallel to the lattice grid. For a curved boundary, simply placing boundary at D ¼ 1/2
will factitiously change the boundary geometry and degrade the accuracy of the velocity
and temperature fields. In this section, a boundary treatment with second-order
accuracy for both velocity and temperature boundaries will be introduced. For the
velocity field, an accurate curved boundary treatment given by Mei et al. (2002) will be
employed. Meanwhile, based on the existing idea of extrapolation of velocity boundary
(Guo et al., 2002b), a method with second-order accuracy to handle the boundary of
temperature fields will be presented.

As we know, for velocity field around an arbitrary shaped body, it is difficult to
obtain analytical solutions. Nevertheless, a substantial evidence has show that the
bounce-back boundary conditions combined with interpolations including the one-half

Figure 2.
The layout of regularly
spaced lattices and curved
wall boundary
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grid spacing correction at boundaries, are in fact of second-order accurate and thus
ca-pable of handling curved boundaries (Mei et al., 2002; Yu et al., 2003). ~f �aðxb; tÞ can be
constructed based upon some know information in the surrounding:

~f �aðxb; tÞ ¼ ~faðxf ; tÞ2 x ~faðxf ; tÞ2 f ðeqÞ
a ðxf ; tÞ

� �
þ varðxf ; tÞ

3

c 2
ea · ½xðubf 2 uf Þ2 2uw�;

ð14Þ

where:

ubf ¼ uff ¼ uðxff ; tÞ; x ¼
2D2 1

t2 2
; if 0 # D ,

1

2
; ð15aÞ

ubf ¼
1

2D
ð2D2 3Þuf þ

3

2D
uw; x ¼

2D2 1

t2 ð1=2Þ
; if

1

2
# D , 1: ð15bÞ

In the above:

e �a ; 2ea; xff ¼ xf þ e �adt; uf ; uðxf ; tÞ; uw ; uðxw; tÞ;

where ubf is the imaginary velocity for interpolations, and x is weight factor.
To implement the curved boundary treatment for temperature, the non-equilibrium

parts of temperature distribution function, gðneqÞ
a ðx; tÞ ¼ gaðx; tÞ2 gðeqÞ

a ðx; tÞ, is
introduced. Let the temperature at xw, xf and xff be Tw, Tf and Tff, respectively.
Then, ~g �aðxb; tÞ can be approximated by an extrapolation method with second-order
accuracy:

~g �aðxb; tÞ ¼
1 2 1

tc
gðneqÞ

�a ðxb; tÞ þ v �aT̂b 1 þ 3e �a ·
ûb

c2

� �
; ð16Þ

gðneqÞ
�a ðxb; tÞ ¼ gðneqÞ

�a ðxf ; tÞ

ûb ¼ ½uw þ ðD2 1Þuf �=D

T̂b ¼ ½Tw þ ðD2 1ÞTf �=D

9>>>=
>>>;
; if D $ 0:75; ð17aÞ

gðneqÞ
�a ðxb; tÞ ¼ DgðneqÞ

�a ðxf ; tÞ þ ð1 2 DÞgðneqÞ
�a ðxff ; tÞ

ûb ¼ uw þ ðD2 1Þuf þ ½2uw þ ðD2 1Þuff �ð1 2 DÞ=ð1 þ DÞ

T̂b ¼ Tw þ ðD2 1ÞTf þ ½2Tw þ ðD2 1ÞTff �ð1 2 DÞ=ð1 þ DÞ

9>>>=
>>>;
;

if D , 0:75:

ð17bÞ

Consequently, on the temperature boundary, the second-order accuracy can be
satisfied by using ~h �aðxb; tÞ to approximate ~g �aðxb; tÞ.

It should be noted that the present boundary treatment for velocity and temperature
fields inherits the basic idea of the bounce back scheme. Therefore, it is easy to be
implemented and costs less in computational time.

In the present simulation, a momentum-exchange method (Mei et al., 2002) is
employed to evaluate the force on the circular cylinder surface. In order to implement
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the method efficiently, a scalar array f(i, j) is employed. f(i, j) ¼ 0 refers to that the
lattice location (i, j) is occupied by fluid; For those lattice nodes inside the solid body,
f(i, j) ¼ 1 is given. For a given boundary node xb inside the solid region, the
momentum-exchange with all possible neighboring fluid nodes over a time step is
given by:

a–0

X
ea½ ~faðxb; tÞ þ ~f �aðxb þ e �adt; tÞ�½1 2 fðxb þ e �adtÞ�: ð18Þ

The total force acted on the solid body by fluid can be obtained by summing the
contribution over all boundary nodes xb belonging to the body, i.e.:

F ¼
all xb

XX
a–0

ea½ ~faðxb; tÞ þ ~f �aðxb þ e �adt; tÞ�½1 2 fðxb þ e �adtÞ�: ð19Þ

In the momentum-exchange method, force F is evaluated after the collision step and
that the value of ~f �a on the boundary given by equation (14) is also evaluated.

4. Numerical simulation
As shown in Figure 3, the velocity and temperature fields around a rotating isothermal
circular cylinder of radius R are numerical simulated in the (x, y)-plane by the LBM.
The coordinates x and y are taken, respectively, to be measured along the horizontal
and vertical directions with the origin at the center of the circular cylinder. The
flow-field considered here is in a rectangular domain. At the entrance, i.e. the left hand
side boundary, fluid with the constant temperature Tl is injected into the flow domain
with constant uniform velocity U in x-direction. Meanwhile, a free outflow boundary is
set on the right hand side of the domain. The upper and lower boundaries are set as
free-slip velocity and heat insulated boundaries. The four sides of the domain should be
placed far enough from the center of the cylinder in order to eliminate the effect of
boundaries. In the simulations, the boundaries at upstream, downstream and two other

Figure 3.
The model of flow and
heat transfer around a
single rotating cylinder
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sides are put as 6.6R, 12.07R and 8.07R, respectively, away from the center of the
cylinder. Initially, the flow field is given by u(x, y) ¼ U, v(x, y) ¼ 0 with uniform
temperature Tl, and the cylinder is stationary with temperature Th. At the next
moment, the cylinder suddenly starts to rotate with an angular velocity V, and the
surface temperature is kept at constant Th. In the simulations, in order to regard the
fluid as incompressible, the flow velocity must be much smaller than the speed of
sound. Therefore, the inflow velocity U is set at 0.01 for Re ¼ 200 and 0.005 for
Re ¼ 500 and 1,000, respectively. Parameter k is introduced to define the ratio of the
peripheral velocity V ¼ VR to U, i.e. k ¼ V/U. For all cases, we have Th ¼ 40, Tl ¼ 20,
r ¼ 6.

By using the dimensionless quantities, the results obtained by the present method
can be compared with those by other theoretical, numerical and experimental methods.
Thus, velocity, displacement, time and temperature are normalized using the following
relations:

u* ¼
u

U
; v* ¼

v

U
; x* ¼

x

R
; y* ¼

y

R
; t* ¼

Ut

R
; T* ¼

T 2 Tl

Th 2 Tl

: ð20Þ

5. Results and discussion
In this section, the velocity and temperature fields and also the force acting on the
rotating cylinder are computed by the present LBM and compared with the theoretical,
experimental and computational results reported by available literatures.

To ensure the numerical results obtained to be grid-independent, the sensitivities of
grid number and distribution are tested. Table I shows the effects of grid size on the
Strouhal number, period-averaged drag and lift coefficient, and the
period-and-surface-averaged Nusselt number at Re ¼ 200, a ¼ 0.5 and Pr ¼ 0.5. In
Table I, M is the number of grid point in horizontal direction, N is the number in
vertically direction. For example, for R ¼ 15, the satisfactory solutions can be obtained
with grid distribution M £ N ¼ 280 £ 242.

For the case of Re ¼ 200 and k ¼ 0.5, Figure 4 shows time development of wake
flow pattern for the values of t* up to 12.0. The left and right columns in the figure
show the streamlines obtained by present method and those by Badr and Dennis (1985)
using the finite difference method (FDM), respectively. An excellent agreement
between both columns in terms of the formation of a Karman vortex street is shown.

To evaluate the consistency of the experimental and the present numerical results,
the distributions of velocity components on positive x-axis are compared at several
moments. Figure 5 shows the evolution with time of u* and v * on positive x-axis. They
may be compared with Figure 17 of the paper by Coutanceau and Menard (1985) which

R Mesh (M £ N) St CD CL kNul

6 112 £ 97 0.09416 1.207 21.258 5.999
10 187 £ 161 0.1079 1.439 21.308 6.211
15 280 £ 242 0.1094 1.505 21.331 6.237
20 373 £ 323 0.1095 1.505 21.332 6.239

Table I.
Effects of grid size at
Re ¼ 200, a ¼ 0.5 and

Pr ¼ 0.5
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Figure 4.
(a)-(e): Caption overleaf;
(f)-(i) evolution of velocity
field for Re ¼ 200, k ¼ 0.5

(a) t*=1.0 

(b) t*=2.0 

(c) t*=4.0 

(d) t*=5.0 

(e) t*=7.0 
Notes: Left – by the present computation; right – Badr and Dennis (1985) using FDM

(f ) t*=8.0

(g) t*=10.0

(h) t*=11.0

(i) t*=12.0

Figure 5.
Velocity profiles on x-axis
for Re ¼ 200, k ¼ 0.5

(b) v* on the positive x-axis
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indicate a good measure of quantitative agreement. Some representative points taken
from the experimental study (Coutanceau and Menard, 1985) are shown in Figure 5 to
illustrate the degree of the quantitative comparison.

Figure 6 shows the streamlines for the case of Re ¼ 200, k ¼ 1.0 by the present
calculation; and a comparison with those of Badr and Dennis (1985) by FDM and the
experimental visualization by Coutanceau and Menard (1985). Basically, good

Figure 6.
Evolution of velocity field

for Re ¼ 200, k ¼ 1.0

(a) t*=4.0

(b) t*=6.0

(c) t*=6.5

(d) t*=8.0

(e) t*=9.0

Notes: Left – by the present computation; middle – Badr and Dennis (1985) using FDM;
right – experiment of Coutanceau and Menard (1985)
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agreements can be identified except the streamlines at t* ¼ 6.0. At this moment, as
shown in Figure 6(b), the streamline shows that two vortices which do not appear in
the corresponding plot by FDM have been formed over the surface of the circular
cylinder. In order to test which result is more accurate, two numerical results at
t* ¼ 6.0 are compared, respectively, with the corresponding experimental result of
Coutanceau and Menard (1985). The comparison shows that two vortices appearing in
the present simulation are correct, as it was observed by the experiment when t* ¼ 6.0.
This demonstrates that the present simulation based on the LBM is more realistic than
that by FDM in reproducing the flow details.

At Re ¼ 500, the force acting on the rotating cylinder with parameter k ¼ 0.1, 0.5
and 1.0 is examined, respectively. Under the condition that t* is small enough, Badr
and Dennis (1985) have presented an approximate analytical solution for the lift
coefficient which can be expressed as:

CL ¼ 2k 2:8996p2
8

3
p21=2

� �
2t

*

Re

 !1=2

þ5:5688p
t
*

Re

 !2
4

3
5: ð21Þ

In Figure 7(a), the variation of lift coefficient CL with time for each parameter k is
shown and compared with the approximate analytical solution. The comparison shows
that the approximate analytical values are indeed suitable only for an early stage of
flow evolution. Moreover, it is observed that the increase of parameter k can result in a
reduction of time range when an approximate analytical solution is valid. The time
developments of lift coefficients for k ¼ 0.5 and 1.0 are also compared with those
reported numerical investigation by Takada and Tsutahara (1998), in which the
evolution of isothermal flow around a suddenly rotating circular cylinder is simulated
by a 2D seven-velocity LBM model. As shown in Figure 7(b), the life coefficients
obtained by the latter oscillation with large amplitude, especially at an early stage of
the flow evolution. In our opinion, this kind of unphysical oscillation may be caused by
the lack of accuracy on the boundary. Since the boundary for the cylinder in Takada
and Tsutahara’s simulation was not located on a pure circle but on a polygon,

Figure 7.
The variation with time
of lift coefficient for
Re ¼ 500: (a) computed
by the present method;
(b) computed by Takada
and Tsutahara (1998)
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the cylinder must occupy more lattice units so that the polygon may approach a circle.
This kind of treatment has factitiously changed the real geometry of the boundary and
therefore led to a reduction in computational accuracy. The comparison shows that the
present method for dealing with curved boundary can overcome the limitation
mentioned above so that is more accurate.

To further check the accuracy of the present method, the present time-averaged
values of drag coefficient are compared with those obtained by Badr and Dennis (1985)
using FDM (Table II) showing good consistency.

Figure 8 shows the evolution of drag and lift coefficients under the same Reynolds
number 200 to examine the effects of k on the force acting on the cylinder surface.
Obviously, both the drag and lift coefficients can reach the periodic state with time
development if the time is long enough. Moreover, the period-averaged lift coefficients,
at 20.2669, 21.331 and 22.699 for k ¼ 0.1, 0.5 and 1.0, respectively, are all less than
zero since the anticlockwise rotation of the cylinder. In addition, the period-averaged
drag coefficients are 1.553, 1.505 and 1.349 for k ¼ 0.1, 0.5 and 1.0, respectively; this

a CD0 (present) Badr and Dennis (1985)

0.5 1.3943 1.42
1.0 1.7689 1.78

Note: Comparison of the present time-averaged values of drag coefficient from t * ¼ 3 to t * ¼ 4 for
a ¼ 0.5 and 1.0 Table II.

Figure 8.
The variation with time

of drag and lift coefficients
for Re ¼ 200
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indicates that the increase of k from 0.1 to 1.0 results in a decrease of period-averaged
drag coefficient.

To analysis the relationship between the velocity field and temperature distributions,
Figure 9 shows the evolution of temperature contours and corresponding velocity
streamlines for Re ¼ 200, k ¼ 0.5 and Pr ¼ 1.0. It can be noted from Figure 9 that an
impulsive start of the cylinder leads to a generation of the initial thermal boundary layer
near the surface of the isotheral cylinder; moreover, the temperature contours are almost
in parallel with the cylinder wall. With time marching, the thickness of thermal
boundary layer experiences a magnification everywhere. However, at the same time, the
crossflow conveys more and more heat from the front to the rear of the cylinder so that
the extension of thermal boundary layer is deeper at the rear than it in the front. This
phenomenon becomes more evident a larger t*. Obviously, the warming up of the
boundary layer at the rear of the cylinder results in a decrease of heat flux there. It is
observed that vortex shedding plays an important role in downstream heat transfer
downstream. In Figure 9, with time marching, the vortices generated at the rear of the
cylinder grow in size and shed into the flow stream enhancing heat transfer. As a result,
high temperatures concentrate in the regions where streamlines have large curvatures
caused by the opened vortices (Figure 9(g)-(j)).

Now, let us consider more precisely of what the effect of k on local heat transfer
coefficient (the Nusselt number). Considering that the flow can reach a periodic state when
t* is large enough, the period-averaged values of Nusselt number distributions at
Re ¼ 200, Pr ¼ 0.5, u [ [08, 3608] with k ¼ 0.0, 0.5, 1.0, respectively, are plotted in polar
coordinates as shown in Figure 10. Where, the angle u is equal to zero degree at the
rearmost point of the cylinder and increases anticlockwise. For k ¼ 0, it can be seen clearly
that the distribution curve is strictly symmetrical with respect to u ¼ 08, and that the
maximum Nusselt number appears at u ¼ 1808, i.e. the foremost point of the cylinder.
Moreover, it is noted that for all values of k, the heat transfer coefficient on the front side is
much higher than that on the back side and also each curve of Nusselt number distribution
has two local minimum and two local maximum points. The overall tendency of these
points with local extrema is to migrate along the surface of cylinder anticlockwise with k.

At Re ¼ 200, the period-and-surface-averaged Nusselt number, i.e. kNul,
is calculated for Pr ¼ 0.5 and 1.0 and with different value of k, respectively.
The results are shown in Figure 11. It is noted that an increase in parameter k results
in an evident decrease in kNul. In addition, Figure 12 shows the variation of
period-and-surface-averaged Nusselt number with Reynolds and Prandtl numbers at
k ¼ 0.5. Obviously, Nusselt number increases with Reynolds and Prandtl numbers.

6. Conclusion
By applying a multi-distribution function LBM model and meanwhile presenting a
boundary treatment of moving curved boundary with second-order accuracy for velocity
and temperature fields, the flow past a rotating isothermal circular cylinder is simulated
numerically. The results of simulation including the evolution with time of velocity field,
and the lift and drag coefficients agree well with those of previous theoretical,
experimental and numerical studies and show that the present method of LBM can
accurately simulate this type of flow problems of rotating cylinders with convective heat
transfer. It is found that a higher Nusselt number can be obtained by either decreasing the
velocity ratio of rotating to inflow or increasing Reynolds and Prandtl numbers.
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Figure 9.
Evolution of velocity

streamlines and
temperature contours for

Re ¼ 200, k ¼ 0.5,
Pr ¼ 1.0
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LBM boundary treatment presented in this paper is basically easy and costs less
computational time. However, the calculation for the whole computational domain in
the present simulation is relatively time consuming due to the application of uniform
gird. To improve the efficiency of computation, a stable LBM with non-uniform mesh
should be proposed, which will be involved in our further work.

Figure 10.
Global distribution of
period-average Nusselt
number along the cylinder
surface for Re ¼ 200,
Pr ¼ 0.5 with different k
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